

COMMON FIXED POINT THEOREM OF AN INFINITE SEQUENCE OF MAPPINGS

IN HILBERT SPACE

ARVIND KUMAR SHARMA¹, V. H. BADSHAH² & V. K. GUPTA³

¹Department of Engineering Mathematics, M.I.T.M, Ujjain, Madhya Pradesh, India

²School of Studies in Mathematics, Vikram University, Ujjain, Madhya Pradesh, India

³Department of Mathematics, Government Madhav Science College, Ujjain, Madhya Pradesh, India

ABSTRACT

The aim of this present paper is to obtain a common fixed point for an infinite sequence of mappings on Hilbert space. Our purpose here is to generalize the our previous result [7]

KEYWORDS: Common Fixed Point, Hilbert Space, Infinite Sequence of Mappings

2010 Mathematics Subject Classification: 47H10.

1. INTRODUCTION

In 2011, Sharma Badshah and Gupta [7] have proved common fixed point theorem for the sequence $\{\mathbf{T}_n\}_{n=1}^{\infty}$ of mappings satisfying the condition

$$\left\|\mathbf{T}_{i}x - \mathbf{T}_{j}y\right\| \leq \alpha \frac{\left\|x - \mathbf{T}_{i}x\right\|^{2} + \left\|y - \mathbf{T}_{j}y\right\|^{2}}{\left\|x - \mathbf{T}_{i}x\right\| + \left\|y - \mathbf{T}_{j}y\right\|} + \beta \left\|x - y\right\|$$
(A)

for all $x, y \in S$ and $x \neq y$; $\alpha \ge 0$, $\beta \ge 0$ and $2\alpha + \beta < 1$.

In 2005, Badshah and Meena [1] have proved common fixed point theorem for the sequence $\{T_n\}_{n=1}^{\infty}$ of mappings satisfying the condition

$$\begin{aligned} \left\| \mathbf{T}_{i} x - \mathbf{T}_{j} y \right\| &\leq \alpha \frac{\left\| x - \mathbf{T}_{i} x \right\| \cdot \left\| y - \mathbf{T}_{j} y \right\|}{\left\| x - y \right\|} + \beta \left\| x - y \right\| \end{aligned} \tag{B}$$

for all $x, y \in S$ with $x \neq y$ also $\alpha \geq 0, \beta \geq 0$ and $\alpha + \beta < 1$.

In 1991, Koparde and Waghmode [3] have proved common fixed point theorem for the sequence $\{T_n\}_{n=1}^{\infty}$ of mappings satisfying the condition

$$\left\|\mathbf{T}_{i}x - \mathbf{T}_{j}y\right\|^{2} \leq a\left(\left\|x - \mathbf{T}_{i}x\right\|^{2} + \left\|y - \mathbf{T}_{j}y\right\|^{2}\right)$$
for all $x, y \in S$ and $x \neq y$; $0 \leq a < \frac{1}{2}$

$$(C)$$

Later in 1998, Pandhare and Waghmode [5] have proved common fixed point theorem for the sequence $\{T_n\}_{n=1}^{\infty}$ of mappings satisfying the condition

Arvind Kumar Sharma, V. H. Badshah & V. K. Gupta

$$\|\mathbf{T}_{i}x - \mathbf{T}_{j}y\|^{2} \leq a \|x - \mathbf{T}_{i}x\|^{2} + b\left(\|x - \mathbf{T}_{i}x\|^{2} + \|y - \mathbf{T}_{j}y\|^{2}\right)$$
(D)
for all $x, y \in S$ and $x \neq y; 0 \leq a, 0 \leq b < 1$ and $a + 2b < 1$.

This result is generalizes by Veerapandi and Kumar [7] and the new condition is

$$\|\mathbf{T}_{i}x - \mathbf{T}_{j}y\|^{2} \leq a\|x - y\|^{2} + b\left(\|x - \mathbf{T}_{i}x\|^{2} + \|y - \mathbf{T}_{j}y\|^{2}\right) + \frac{c}{2}\left(\|x - \mathbf{T}_{i}x\|^{2} + \|y - \mathbf{T}_{j}y\|^{2}\right)$$
(E)
for all $x, y \in S$ and $x \neq y$ where $0 \leq a, b, c < 1$ and $a + 2b + 2c < 1$.

Now we introduce a new condition for the generalization of following known results.

Theorem 1: [7] Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be an infinite sequence of mappings satisfy (A). Then $\{T_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Theorem 2: [1] Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be an infinite sequence of mappings satisfy (B). Then $\{T_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Theorem 3: [3] Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be a sequence of mappings satisfy (C). Then $\{T_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Theorem 4: [5] Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be a sequence of mappings satisfy (D). Then $\{T_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Theorem 5: [8] Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be a sequence of mappings satisfy (E). Then $\{T_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Main Result

We proved fixed point theorem for the infinite sequence $\{T_n\}_{n=1}^{\infty}$ to generalize our previous results [7].

Theorem: Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty}: S \to S$ be an infinite sequence of mappings satisfying the following condition

$$\begin{aligned} \left\| \mathbf{T}_{i} x - \mathbf{T}_{j} y \right\| &\leq \left(\alpha + \beta \frac{\left\| x - \mathbf{T}_{i} x \right\|}{\left\| x - y \right\|} \right) \left\| y - \mathbf{T}_{j} y \right\| \\ for all x, y \in S and \ x \neq y; \ \alpha \geq 0, \ \beta \geq 0 and \ 2\alpha + \beta < 1. \end{aligned}$$
(F)

Then $\{\mathbf{T}_n\}_{n=1}^{\infty}$ has a unique common fixed point.

Proof: Let S be a closed subset of a Hilbert space H and $\{T_n\}_{n=1}^{\infty} : S \to S$ be an infinite sequence of mappings. Let $x_0 \in S$ be any arbitrary point in S.

Define a sequence $\{x_n\}_{n=1}^{\infty}$ in S by $x_{n+1} = T_{n+1}x_n$, for n = 0, 1, 2, ...For any integer $n \ge 1$ $\|x_{n+1} - x_n\| = \|T_{n+1}x_n - T_nx_{n-1}\|$ $\leq \left(\alpha + \beta \frac{\|x_n - \mathbf{T}_{n+1}x_n\|}{\|x_n - x_{n-1}\|}\right) \|x_{n-1} - \mathbf{T}_n x_{n-1}\|$ $\leq \left(\alpha + \beta \frac{\|x_n - x_{n+1}\|}{\|x_n - x_{n-1}\|} \right) \|x_{n-1} - x_n\|$ $\leq \alpha \|x_{n-1} - x_n\| + \beta \|x_n - x_{n+1}\|$ *i.e.* $||x_{n+1} - x_n|| \le \alpha ||x_{n-1} - x_n|| + \beta ||x_n - x_{n+1}||$ $\Rightarrow (1-\beta) \|x_{n+1} - x_n\| \le \alpha \|x_n - x_{n-1}\|$ $\Rightarrow \|x_{n+1} - x_n\| \leq \frac{\alpha}{1-\beta} \|x_n - x_{n-1}\|$ If $k = \frac{\alpha}{1-\beta}$ then k < 1. $||x_{n+1} - x_n|| \le k ||x_n - x_{n-1}||$ $\leq k \|x_n - x_{n-1}\| \leq k^2 \|x_{n-1} - x_{n-2}\| \leq k^3 \|x_{n-2} - x_{n-3}\| \leq \dots \leq k^n \|x_1 - x_0\|$ *i.e.* $||x_{n+1} - x_n|| \le k^n ||x_1 - x_0||$ for all $n \ge 1$ is integer. Now for any positive integer $m \ge n \ge 1$ $||x_n - x_m|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - x_{n+2}|| + \dots + ||x_{m-1} - x_m||$ $\leq k^{n} \left\| x_{1} - x_{0} \right\| + k^{n+1} \left\| x_{1} - x_{0} \right\| + \ldots + k^{m-1} \left\| x_{1} - x_{0} \right\|$ $\leq k^{n} \|x_{1} - x_{0}\| (1 + k + ... + k^{m-n-1})$

i.e.
$$||x_n - x_m|| \le \left(\frac{k^n}{1-k}\right) ||x_1 - x_0|| \to 0 \text{ as } n \to \infty \ (k < 1)$$

Therefore $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Since S is a closed subset of a Hilbert space H, so $\{x_n\}_{n=1}^{\infty}$ converges to a point u in S.

Now we will show that u is common fixed point of infinite sequence $\{T_n\}_{n=1}^{\infty}$ of mappings from S into S.

Suppose that $T_n u \neq u$ for all *n*.

Consider for any positive integer $m (\neq n)$

$$\begin{split} \|u - T_{m}u\| &\leq \|u - x_{n}\| + \|x_{n} - T_{m}u\| \\ &= \|x_{n} - T_{m}u\| \\ &= \|T_{n}x_{n-1} - T_{m}u\| \\ &\leq \left(\alpha + \beta \frac{\|x_{n-1} - T_{n}x_{n-1}\|}{\|x_{n-1} - u\|}\right) \|u - T_{m}u\| \\ &\leq \left(\alpha + \beta \frac{\|x_{n-1} - x_{n}\|}{\|x_{n-1} - u\|}\right) \|u - T_{m}u\| \\ &\leq \alpha \|u - T_{m}u\| + \beta \frac{\|x_{n-1} - x_{n}\|}{\|x_{n-1} - u\|} \|u - T_{m}u\| \\ &\leq \alpha \|u - T_{m}u\| + \beta \frac{\|x_{n-1} - x_{n}\|}{\|x_{n-1} - u\|} \|u - T_{m}u\| \\ &i.e. \qquad \|u - T_{m}u\| \leq \alpha \|u - T_{m}u\| + \beta \frac{\|x_{n-1} - x_{n}\|}{\|x_{n-1} - u\|} \|u - T_{m}u\| \\ &\Rightarrow \|u - T_{m}u\| \leq \frac{\beta}{1 - \alpha} \frac{\|x_{n-1} - x_{n}\|}{\|x_{n-1} - u\|} \|u - T_{m}u\| \rightarrow 0 \text{ as } n \to \infty \\ &\text{So} \|u - T_{m}u\| \leq 0. \end{split}$$

Hence $u = T_m u$ and so $u = T_n u$ for all *n*.

Hence u is a common fixed point of infinite sequence $\{\mathbf{T}_n\}_{n=1}^{\infty}$ of mappings.

Uniqueness

.Suppose that there is $u \neq v$ such that $T_n v = v$ for all *n*.

Consider
$$\|u - v\| = \|\mathbf{T}_{n}u - \mathbf{T}_{n}v\|$$

$$\leq \left(\alpha + \beta \frac{\|u - \mathbf{T}_{n}u\|}{\|u - v\|}\right) \|v - \mathbf{T}_{n}v\|$$
i.e. $\|u - v\| \leq 0$

- $\Rightarrow ||u-v||=0$
- Thus u = v.

Hence fixed point is unique.

Example: Let X = [0, 1], with Euclidean metric d. Then {X, d} is a Hilbert space with the norm defined by d(x, y) = ||x - y||

Let
$$\{x_n\}_{n=1}^{\infty} = \left\{\frac{1}{2^n}\right\}_{n=1}^{\infty}$$
 be the sequence in X and let $\{T_n\}_{n=1}^{\infty}$ be the infinite sequence of mappings such that

$$x_{n+1} = T_{n+1}x_n$$
, for $n = 0, 1, 2, \dots$

Taking
$$x = \frac{1}{2^n}$$
 and $y = \frac{1}{2^{n-1}}$; $x \neq y$. Also $i = n+1$ and $j = n$.

Then from (F) $\{X_n\}_{n=1}^{\infty}$ is a Cauchy sequence in *X*, which is converges in *X* also it has a common point in *X*.

CONCLUSIONS

The theorem proved in this paper by using rational inequality is improved and stronger form of some earlier inequality given by Badshah and Meena [1], Sharma Badshah and Gupta [7], Koparde and Waghmode [3], Pandhare and Waghmode [5], Veerapandi and Kumar [8].

REFERENCES

- 1. Badshah, V.H. and Meena, G., (2005): Common fixed point theorems of an infinite sequence of mappings, Chh. J. Sci. Tech. Vol. 2, 87-90.
- Browder, Felix E. (1965): Fixed point theorem for non compact mappings in Hilbert space, Proc Natl Acad Sci U S A. 1965 June; 53(6): 1272–1276.
- 3. Koparde, P.V. and Waghmode, B.B. (1991): On sequence of mappings in Hilbert space, The Mathematics Education, XXV, 197.
- 4. Koparde, P.V. and Waghmode, B.B. (1991): Kannan type mappings in Hilbert spaces, Scientist Phyl. Sciences Vol. 3, No. 1, 45-50.
- 5. Pandhare, D.M. and Waghmode, B.B. (1998): On sequence of mappings in Hilbert space, The Mathematics Education, XXXII, 61.
- 6. Sangar, V.M. and Waghmode, B.B. (1991): Fixed point theorem for commuting mappings in Hilbert space-I, Scientist Phyl. Sciences Vol. 3, No.1, 64-66.
- 7. Sharma, A.K., Badshah, V.H and Gupta, V.K. (2012): Common fixed point theorems of a sequence of mappings in Hilbert space, Ultra Scientist Phyl. Sciences.
- 8. Veerapandhi, T. and Kumar, Anil S. (1999): Common fixed point theorems of a sequence of mappings in Hilbert space, Bull. Cal. Math. Soc. 91 (4), 299-308.